标签归档:Qt

Qt for iOS 应用使用自定义动态库 Framework

本文内容适合当你想使用 Qt 调用 xcode 开发的动态库 framework 做 iOS 应用的场景,文中涉及到原始动态库 framework 文件的配置,以及 Qt 如何引入和打包动态库 framework 到自身程序中的方法。

动态库 framework 的配置

默认 xcode 创建的 framework 都已经是动态库形式了,所以这里不多介绍,请确保你的 Build Settings 中以下设置是无误的,特别是 Dynamic Library Install Name Base,它决定了动态库能否被应用成功搜索到。

对于 @rpath 的说明,请看这里:https://www.cnblogs.com/csuftzzk/p/mac_run_path.html

Qt 项目配置引入 framework

Qt 引入 framework 只需要给 LIBS 追加 framework 的路径和要链接的文件就可以了,配置如下,请注意使用 framework 参数是 -F 和 -framework(注意大小写)

LIBS += -F$$PWD/../../build/Products/Release
LIBS += -framework my_dylib.framework

这样引入还是不行的,因为 iOS 应用部署上去以后动态库的 framework 文件是不会跟随打包进去的,所以你还需要做一件事情就是把 framework 打包到你的应用中,配置如下:

MY_DYLIB_FRAMEWORK.files = $$PWD/../../build/Products/Release-iphoneos/my_dylib.framework
MY_DYLIB_FRAMEWORK.path = /Frameworks
QMAKE_BUNDLE_DATA += MY_DYLIB_FRAMEWORK

分别指定了 framework 文件的路径和要被打包进去的目标路径,这里是将 $$PWD/../../build/Products/Release-iphoneos/my_dylib.framework 这个 framework 打包到了应用的 /Framework 目录下。最终你看到的应用目录结构是这样的

├── Default-568h@2x.png
├── Frameworks
│   └── my_dylib.framework
│       ├── Info.plist
│       ├── ReadMe.txt
│       ├── _CodeSignature
│       │   └── CodeResources
│       └── my_dylib
├── Info.plist
├── LaunchScreen.nib
├── PkgInfo
├── _CodeSignature
│   └── CodeResources
└── cross-platform-demo

可以看到,mu_dylib.framework 文件已经在我们应用的 /Framework 目录下了,这样文件就被打包进去了,而且当你使用 Qt 编译程序的时候,在 Build Shadow 目录下会看到生成对应的 xcodeproj 文件,可以直接使用 xcode 打开,使用 xcode 打开项目后可以看到项目的 Build Phases 下面多了一条 Copy file to bundle 的项目:

但是当你尝试在 iOS 或者模拟机中运行这个应用时你会发现又有新的错误了,如下所示:

dyld: Library not loaded: @rpath/my_dylib.framework/my_dylib
  Referenced from: /var/containers/Bundle/Application/D0143CDE-FFFE-4343-BFD9-D70DA66C831F/cross-platform-demo.app/cross-platform-demo
  Reason: image not found
program received signal 6, thread:15362b

我明明已经把文件复制进去了,为什么还是会提示,还记得上面我们提到的 Dynamic Library Install Name Base 吗?这是动态库 framework 设置的,根据上面文章的资料,我们要在调用该模块的应用中设置 rpath 的搜索范围,让其能找到我们的动态库文件。Qt 项目中添加如下配置:

# 添加应用的 runpath 路径,因为 my_dylib 动态库 Framework 设置的 install path 为 rpath,所以应用使用时需要单独设置
QMAKE_LFLAGS += -Wl,-rpath,@loader_path/Frameworks

如此设置后,在 Qt 中就可以成功编译程序并运行在模拟器或真机上了,如果还有任何疑问欢迎留言我们一起讨论。

Qt Quick QSettings 配置信息保存位置

Qt Quick 给我们提供了非常方便的配置文件管理功能,它不仅仅可以在 C++ 中访问,也可以在 QML 中直接访问,最近在看 Qt Examples 目录下的 gallery 项目示例时,虽然知道用的是 QSettings 保存的持久化数据,但是不知道配置保存在哪里了,遂到 Qt 官网查询了一下,有英文阅读能力的可直接参考官网:https://doc.qt.io/qt-5/qsettings.html,以下为照搬翻译:

继续阅读

C++ 和 QML 的正确交互方法

相关资料

继续阅读

Qt 模拟 HTTP 表单提交文字或文件到服务器

传统通过 HTTP 表单的方式来上传文件在 Web 中实现是非常简单的,一个表单中加几个域填写上对应的内容提交就可以了,但如果通过 Qt 来实现就相对麻烦一点,不过我都总结好了代码,直接使用就可以了。

需要用到的模块

  • QNetworkAccessManager 用来发起 GET/POST 请求
  • QNetworkReply 用来描述响应信息
  • QHttpMultiPart 用来模拟表单域
  • QNetworkRequest 用来构建请求地址等信息

继续阅读

Qt QSS 属性选择器使用详解

Qt 的属性选择器是其独有的,非常类似 CSS 的类选择器,但是由于 CSS 的类选择器可以设置多个,所以一个标签只要设置多个的 class 就可以实现不同的效果了甚至重叠效果。但是 Qt 的类选择器没有那么强大,他不能给控件设置多个类标识。所以就有了属性选择器这么个东西。

继续阅读

Qt Creator 项目属性配置常用设置

设置编译后目标保存目录

DESTDIR     = bin

设置一些编译过程中临时文件目录

MOC_DIR     = tmp/moc
OBJECTS_DIR = tmp/obj
UI_DIR      = tmp/ui
RCC_DIR     = tmp/rcc

设置头文件的拓展目录

INCLUDEPATH += $$PWD/libs/

根据不同属性链接不同的静态库

win32:CONFIG(release, debug|release):       LIBS += -L$$PWD/libs/ -ljsoncpp
else:win32:CONFIG(debug, debug|release):    LIBS += -L$$PWD/libs/ -ljsoncpp_d

或者

LIBS        += -L$$PWD/libs/
win32 {
    CONFIG(debug, debug|release) {
        LIBS += -ljsoncpp_d
        LIBS += -lnim_cpp_sdk_d
    } else {
        LIBS += -ljsoncpp
        LIBS += -lnim_cpp_sdk
    }
}

根据不同操作系统设置平台化差异属性

unix {
    target.path = /usr/local/lib
}

win32 {
    target.path = C:\Windows
}

INSTALLS    = target

更多请参考:http://doc.qt.io/qt-5/qmake-variable-reference.html

Qt 注册自定义数据类型提供信号和槽函数传递参数

Qt 信号和槽函数参数只能是基于 Qt 的基础类型的,比如 QString、int、bool 等,如果想传递自定义类型默认情况下是行不通的。要想在 Qt 的信号和槽函数之间传递自定义类型,可以先将自己的自定义类型注册一下,使用如下代码:

Q_DECLARE_METATYPE(nim::DocTransInfo)

nim::DocTransInfo 为你的自定义数据结构,我这里是一个结构体。当需要传递这个数据时,不是直接使用,而是用 QVariant 来包装一下,信号和槽函数则直接使用 QVariant 类型的数据作为参数传递。首先我们连接信号和槽:

connect(this, SIGNAL(AddDocItemSignalNew(QVariant)), this, SLOT(AddDocItemNew(QVariant)), Qt::QueuedConnection);

信号和槽函数的声明如下:

signals:
    void AddDocItemSignalNew(QVariant variant);
private slots:
    void AddDocItemNew(QVariant variant);

当要发起信号的时候,把我们要传递的这个数据包装到 QVariant 中,然后传递给信号函数就可以了。如下所示:

QVariant data;
data.setValue(file_info);
emit AddDocItemSignalNew(data);

槽函数接受到信号时可以像如下方法一样解析参数出来使用:

void MainForm::AddDocItemNew(QVariant variant)
{
    nim::DocTransInfo doc_info = variant.value<nim::DocTransInfo>();
    // ....... 其他代码
}

这样包装后,我们就可以使用 Qt 的信号和槽功能来传递自定义数据结构了。

Qt 用画笔对图片实现马赛克效果

最近接了一个用 Qt 做跨平台截图工具的任务,主要功能有截图、绘制图案、马赛克、毛玻璃、文字能效果,其中马赛克功能时参考网上的文献并自己研究制作出来的,这里特意给大家分享一下。有需要的朋友可以作为借鉴。

实现原理

首先要开始实现之前,我们首先要来说一下我自己实现马赛克功能的原理。

  1. 为了可以执行撤销操作,我们不能直接对图片进行修改。将图片附加到窗口上以后,需要在窗口上覆盖一层透明的窗口,在这个窗口使用画笔等工具来绘制马赛克,覆盖后面的图片来实现一个视觉效果,最终保存的时候将图片和透明窗口上绘制的数据合并得到一个绘制了马赛克效果的图片。
  2. 对窗口进行区块划分,比如当我们想让每个马赛克的块大小是 10px,那么我们以图片左上角为 0,0 点,给图片划分成一块一块 10px*10px 的小块。
  3. 当鼠标点击透明窗口的某个区域时要到实际后面图片的响应坐标取这个坐标对应像素的颜色值(QColor),如果条件允许可以将这个坐标周围的色值也都取出来做一个颜色混合得到平均的颜色色彩。
  4. 计算当前坐标对应的 10px10px 小块的起始点坐标,然后根据已经取出来的颜色绘制一个 10px10px 像素的方块。
  5. 鼠标移动过程中时时计算坐标,如果当前鼠标所在坐标已经绘制了一个图形那么不再绘制,如果没有绘制则重复 3、4 步。

大体步骤就是这样的,接下来我们来拆分每一个步骤的实现方式。

实现细节

这个透明窗口派生于 QWidget 类,在构造函数中设置窗口为透明的,这样在我们将绘制的马赛克和图片混合的时候就不会有窗口背景色了。

// 让窗口背景透明,在获取窗口绘制的数据时不显示背景色
setAttribute(Qt::WA_TranslucentBackground, true);

对窗口划分区域并根据鼠标得出马赛克绘制方块。在绘制前你要监听鼠标在窗口上按下、弹起、移动等消息,在鼠标按下前,我们要先初始化一个 image 对象来提供我们获取颜色,并根据图片大小初始化一个坐标数组,比如我们有一个 100*100 的图片,想让马赛克的大小是 10 像素,那么我们就要将这个图片宽和高都划分为 10 个 10 像素的小方块。记录下所有图片的像素坐标点。

// 将截取的未知转为 iamge 对象,用来获取坐标像素的颜色
image_ = originPainting_->toImage();
// 初始化每个像素点的坐标位置,鼠标移动过程中记录坐标并通过数组下标
// 直接访问到数据查看某个区块是否已经被绘制上了马赛克。
pointArray.reset(new QVector<QVector<bool>>);
pointArray->resize(parentWidget()->width());
for (int i = 0; i < parentWidget()->width(); i++) {
    // 高度像素
    (*pointArray)[i].resize(parentWidget()->height());
}
for (int i = 0; i < parentWidget()->width(); i++) {
    for (int j = 0; j < parentWidget()->height(); j++) {
        (*pointArray)[i][j] = false;
    }
}

在按下的时候根据背景图像取像素的点,计算并记录像素坐标点归属那一块我们划分出来的小方块:

int x = endPoint_.x() - endPoint_.x() % mosaicSize_;
int y = endPoint_.y() - endPoint_.y() % mosaicSize_;

if (x < 0) x = 0;
if (y < 0) y = 0;

// 防止越界崩溃
if (x > pointArray->size() - mosaicSize_ ||
    y > (*pointArray)[0].size() - mosaicSize_) {
    break;
}

if ((*pointArray)[x][y] == false) {
    (*pointArray)[x][y] = true;

    MosaicData mosaic;

    // 为适配 retina 屏幕从全屏界面中取像素颜色
    QColor color = image_.pixel(realX, realY);

    QPen pen;
    pen.setColor(color);

    mosaic.color_ = color;
    mosaic.pen_ = pen;
    mosaic.point_ = { x, y };

    drawMosaic_.push_back(mosaic);
}

鼠标移动的时候同样走上面的流程,记录下鼠标移动的所有的坐标。此时在透明窗口的 paintEvent 中,你已经可以根据 drawMosaic_ 里面记录的坐标开始绘制一个一个 mosaicSize_ 大小的小方块了。最后在保存图片的时候,你可以先将透明窗口图片保存为一个 pixmap,然后将 pixmap 合并到图片中就可以了。

QRect imageRect = CommonHelper::getRetinaRect(currentRect_);

// 创建一副空背景图片
QImage resultImg = QImage(imageRect.width(), imageRect.height(), QImage::Format_ARGB32);
std::shared_ptr<QPainter> painter;
painter.reset(new QPainter(&resultImg));

// 先绘制截图的内容
painter->drawPixmap(QRect(0, 0, imageRect.width(), imageRect.height()), *originPainting_, imageRect);

// 再绘制图形数据
for (auto window : drawItemList_) {
    // 跳过空文本窗体
    if (window->getDrawModel() == DrawUnit::MODEL::Text && window->getDrawText().size() == 0) {
        continue;
    }

    // 获取窗口数据到 pixmap 中
    QPixmap pixmap = window->grab();
    // 获取窗口实际大小
    QRect windowRect = window->rect();
    // retina 兼容
    QRect windowImageRect = CommonHelper::getRetinaRect(windowRect);

    painter->drawPixmap(QRect(currentRect_.width() - windowRect.width(), currentRect_.height() - windowRect.height(),
        windowImageRect.width(), windowImageRect.height()), pixmap, windowImageRect);

    window->close();
}

return resultImg;

最终效果